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A b s t r a c t  

This is the second paper giving a simple application of the Newman-Penrose formalism to 
be used by those learning this theory. Here we solve the spherically symmetric Einstein- 
Maxwell problem for the Reissner-Nordstrcm solution using the Newman-Penrose 
formalism. As in our previous example the calculation is carried out using a Minkowski 
null tetrad. 

As another simple application of the Newman-Penrose (NP) spin coefficient 
formalism (Newman and Penrose, 1962) [see our previous paper (Davis, 1976) 
for the Schwarzschild solution] we present the Einstein-Maxwell solution for 
the case of static spherical symmetry. This will yield the Reissner-Nordstrcm 
solution, which is equivalent to the general, time-dependent solution via a 
Birkhoff-type theorem. 

With the hope that the reader has a grasp of the basics" of the NP formalism 
[see Davis (1976) for a brief discussion], we will not present them here. The 
notation is that of Newman and Penrose (1962) and Davis (1976). 

The metric for static spherical symmetry can be written 

ds  2 = e2Vdt2  - e2Udr 2 - r2(dO 2 + sin 2 0 dq52) (1) 

where v and u depend only on r. Since we will perform our calculations in the 
orthonormal frame 

co 1 = eU d r  

co 2 = rdO  (2) 
00 3 = r sinO d ~  

~o 4 = e v d t  

the metric takes the form of the Minkowski flat.space metric. 
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Calculations in the NP formalism are based upon a tetrad of  null vectors 
which we will choose to be 

t.  = (8. '  + ~ . 4 ) l v~  
H# ---- (__~#1 -k ~#4)/%/~ 

(3) 
m .  = (8~, 2 + i ~ 9 ) l x / ~  

The use of  this Minkowski null tetrad is impor tant  in this spin coefficient 
method of  finding solutions for a given metric. Since the metric is Minkowskiam 
when one does the calculation in an or thonormal  frame, the null te t rad (3) can 
always be used as a starting point  for the calculations. Using this te t rad we find 
the spin coefficients to  be 

K = a = r = v = X = r r = 0  (4) 

p = ~ = e - " t x / 2 r  (5)  

a = - 3  = cotan O/2x/~r (6) 

e = 7 = - (1/2x/~)v, 1 e-u (7) 

where the comma denotes ordinary differentiation with respect to  r. 
F rom the symmetry  of the space-time we see that  only radial electric and 

magnetic fields are present. Maxwell 's equations eliminate the radial magnetic 
field; therefore,  the tetrad components  of  the field tensor are 

(Oo =- FuvlUm v = 0 (8) 

4~2 =- F~vm "nv = 0 (9) 

Im q~l --=- ½Fud Ta"rnv = 0 (10) 

Re ¢1 = ½Fu~ l**nv 4= 0 (11) 

The Einstein equations in the NP formalism are wri t ten in terms o f  the tetrad 
components  of  the Ricci tensor, gab. From the Einstein-Maxwell equations 
we have 

40ab = 87rTab (1 2) 

where 

Tab = CaCb/4~ (13) 

(the bar denotes the complex conjugate) we find the Ricci tensor is 

Cab = 2¢a~b (14) 

We have used geometrized units G = c = 1. Substituting Re ¢1 -- ¢ into the 
energy-momentum tensor, we have 

400o = q°ol = 40o2 = 40t2 = 4022 = 0 (15) 
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~ n  = 2~ b2 (16) 

As shown in Davis (1976), all spherically symmetric space-times are Petrov 
type D, so the tetrad components  of  the Weyl tensor are 

q~o = qq = q*3 = I '4  = 0 (17) 

*2 4:0 (1 S) 

Now, the nontrivial NP equations are 

to, 1 = - ~ e U ( o  z + 2ep) (19) 

e,1 = -eU(~°2 + 2¢ 2 - 4e2)/X/~ (20) 

~2 = (~p= _ p2 + ½r2)/2 (21) 

g'2 = 4ep (22) 

The nontrivial Maxwell equation is 

(9,1 = -- 2 N /'2 e U p (9 (23) 

Substituting (5) into (23) and solving the differential equation, we have 

0 = ~c/r s (24) 

which we see from (11) is equal to one-half the electric field. The constant k 
then is one-half the total  charge Q, so 

(9 = Q/2r  2 (25) 

Integration of  the differential equation (19) yields 

(U + V), 1 = 0 (26) 

Substitution of  (22) and (26) into (21) gives 

e -2u = e 2v = 1 - -  ro/r + QS/rS (27) 

Tile constant ro, evaluated at large distance and for Q = 0, is twice the massM 
of  the gravitating body.  Therefore, the metric is 

as s = (1 - 2M/r + Q2/r : )  a t  s - (1 - 2M/r + OS/r2)-i  dr s 
(28) 

- rS(dO s + sin s 0 dO s) 

which is the Reissner-Nordstr4m metric, 

References  

Davis, T. M. (1976). This issue, International Journal o f  Theoretical Physics, 15, 315. 
Newman, E. T. and Penrose, R. (1962). Journal o f  Mathematical Physics, 3, 566. 


